Introduction
If you have been working in seismology, then you must have come across Generic Mapping Tools (GMT) software. It is widely used software, not only in seismology but across the Earth, Ocean, and Planetary sciences and beyond. It is a free, open-source software used to generate publication quality maps or illustrations, process data and make animations. Recently, GMT built API (Application Programming Interface) for MATLAB, Julia and Python. In this post, we will explore the Python wrapper library for the GMP API – PyGMT. Using the GMT from Python script allows enormous capabilities.
The API reference for PyGMT can be accessed from here and is strongly recommended. Although PyGMT project is still in completion, there are many functionalities available.
Step-by-step guide for PyGMT using an example
In this post, we will demonstrate the PyGMT implementation by plotting the topographic map of southern India. We will also plot some markers on the map.
Importing Libraries
The first thing I like to do is to import all the necessary libraries for the task. This keeps the code organized.
import pygmt
minlon, maxlon = 60, 95
minlat, maxlat = 0, 25
Define topographic data source
The topographic data can be accessed from various sources. In this snippet below, I listed a couple of sources.
#define etopo data file
# topo_data = 'path_to_local_data_file'
topo_data = '@earth_relief_30s' #30 arc second global relief (SRTM15+V2.1 @ 1.0 km)
# topo_data = '@earth_relief_15s' #15 arc second global relief (SRTM15+V2.1)
# topo_data = '@earth_relief_03s' #3 arc second global relief (SRTM3S)
Initialize the pyGMT figure
Similar to the matplotlib’s fig = plt.Figure()
, PyGMT begins with the creation of Figure instance.
# Visualization
fig = pygmt.Figure()
Define CPT file
# make color pallets
pygmt.makecpt(
cmap='topo',
series='-8000/8000/1000',
continuous=True
)
Plot the high resolution topography from the data source
Now, we provide the topo_data
, region
and the projection
for the figure to plot. The region
can also be provided in the form of ISO country code strings, e.g. TW
for Taiwan, IN
for India, etc. For more ISO codes, check the wikipedia page here. In this example, we used the projection
of M4i
, which specifies four-inch wide Mercator projection. For more projection options, check here.
#plot high res topography
fig.grdimage(
grid=topo_data,
region=[minlon, maxlon, minlat, maxlat],
projection='M4i'
)
#plot high res topography
fig.grdimage(
grid=topo_data,
region=[minlon, maxlon, minlat, maxlat],
projection='M4i',
frame=True
)
#plot high res topography
fig.grdimage(
grid=topo_data,
region=[minlon, maxlon, minlat, maxlat],
projection='M4i',
shading=True,
frame=True
)
Plot the coastlines/shorelines on the map
Figure.coast
can be used to plot continents, shorelines, rivers, and borders on maps. For details, visit pygmt.Figure.coast.
fig.coast(
region=[minlon, maxlon, minlat, maxlat],
projection='M4i',
shorelines=True,
frame=True
)
Plot the topographic contour lines
We can also plot the topographic contour lines to emphasize the change in topography. Here, I used the contour intervals of 4000 km and only show contours with elevation less than 0km.
fig.grdcontour(
grid=topo_data,
interval=4000,
annotation="4000+f6p",
limit="-8000/0",
pen="a0.15p"
)
Plot data on the topographic map
## Generate fake coordinates in the range for plotting
lons = minlon + np.random.rand(10)*(maxlon-minlon)
lats = minlat + np.random.rand(10)*(maxlat-minlat)
# plot data points
fig.plot(
x=lons,
y=lats,
style='c0.1i',
color='red',
pen='black',
label='something',
)
We plot the locations by red cicles. You can change the markers to any other marker supported by GMT, for example a0.1i
will produce stars of size 0.1 inches.
Plot colorbar for the topography
Default is horizontal colorbar
# Plot colorbar
fig.colorbar(
frame='+l"Topography"'
)
For vertical colorbar:
# For vertical colorbar
fig.colorbar(
frame='+l"Topography"',
position="x11.5c/6.6c+w6c+jTC+v"
)
We can define the location of the colorbar using the string x11.5c/6.6c+w6c+jTC+v
. +v
specifies the vertical colorbar.
Output the figure to a file
Similar to matplotlib
, PyGMT shows the figure by
# save figure
fig.show() #fig.show(method='external')
To save figure to png. PyGMT crops the figure by default and has output figure resolution of 300 dpi for png
and 720 dpi for pdf
. There are several other output formats available as well.
# save figure
fig.savefig("topo-plot.png", crop=True, dpi=300, transparent=True)
fig.savefig("topo-plot.pdf", crop=True, dpi=720)
If you want to save all formats (e.g., pdf, eps, tif) then
allformat = 1
if allformat:
fig.savefig("topo-plot.pdf", crop=True, dpi=720)
fig.savefig("topo-plot.eps", crop=True, dpi=300)
fig.savefig("topo-plot.tif", crop=True, dpi=300, anti_alias=True)
Complete Script
import numpy as np
import pygmt
np.random.seed(0)
minlon, maxlon = 60, 95
minlat, maxlat = 0, 25
## Generate fake coordinates in the range for plotting
lons = minlon + np.random.rand(10)*(maxlon-minlon)
lats = minlat + np.random.rand(10)*(maxlat-minlat)
#define etopo data file
topo_data = '@earth_relief_30s' #30 arc second global relief (SRTM15+V2.1 @ 1.0 km)
# Visualization
fig = pygmt.Figure()
# make color pallets
pygmt.makecpt(
cmap='topo',
series='-8000/8000/1000',
continuous=True
)
#plot high res topography
fig.grdimage(
grid=topo_data,
region=[minlon, maxlon, minlat, maxlat],
projection='M4i',
shading=True,
frame=True
)
# plot coastlines
fig.coast(
region=[minlon, maxlon, minlat, maxlat],
projection='M4i',
shorelines=True,
frame=True
)
# plot topo contour lines
fig.grdcontour(
grid=topo_data,
interval=4000,
annotation="4000+f6p",
# annotation="1000+f6p",
limit="-8000/0",
pen="a0.15p"
)
# plot data points
fig.plot(
x=lons,
y=lats,
style='c0.1i',
color='red',
pen='black',
label='something',
)
## Plot colorbar
# Default is horizontal colorbar
fig.colorbar(
frame='+l"Topography"'
)
# save figure as pdf
fig.savefig("topo-plot.pdf", crop=True, dpi=720)
Plot Focal Mechanism on a Map
How would you plot the focal mechanism on a map? This can be simply done in GMT using the command psmeca
. But PyGMT do not support psmeca
so far. So, we use a workaround. We call the GMT module using the PyGMT’s pygmt.clib.Session
class. This we do using the context manager with
in Python.
import pygmt
import numpy as np
minlon, maxlon = 70, 100
minlat, maxlat = 0, 35
## Generate fake coordinates in the range for plotting
num_fm = 15
lons = minlon + np.random.rand(num_fm)*(maxlon-minlon)
lats = minlat + np.random.rand(num_fm)*(maxlat-minlat)
strikes = np.random.randint(low = 0, high = 360, size = num_fm)
dips = np.random.randint(low = 0, high = 90, size = num_fm)
rakes = np.random.randint(low = 0, high = 360, size = num_fm)
magnitudes = np.random.randint(low = 5, high = 9, size = num_fm)
#define etopo data file
topo_data = '@earth_relief_30s' #30 arc second global relief (SRTM15+V2.1 @ 1.0 km)
fig = pygmt.Figure()
# make color pallets
pygmt.makecpt(
cmap='topo',
series='-8000/11000/1000',
continuous=True
)
#plot high res topography
fig.grdimage(
grid=topo_data,
region='IN',
projection='M4i',
shading=True,
frame=True
)
fig.coast( region='IN',
projection='M4i',
frame=True,
shorelines=True,
borders=1, #political boundary
)
for lon, lat, st, dp, rk, mg in zip(lons, lats, strikes, dips, rakes, magnitudes):
with pygmt.helpers.GMTTempFile() as temp_file:
with open(temp_file.name, 'w') as f:
f.write(f'{lon} {lat} 0 {st} {dp} {rk} {mg} 0 0') #moment tensor: lon, lat, depth, strike, dip, rake, magnitude
with pygmt.clib.Session() as session:
session.call_module('meca', f'{temp_file.name} -Sa0.2i')
fig.savefig("fm-plot.pdf", crop=True, dpi=720)
Plotting interstation paths between two stations
The following script uses the sel_pair_csv
file for the coordinates of the pairs of stations. The sel_pair_csv
file is a csv file that is formatted like:
stn1 stlo1 stla1 stn2 stlo2 stla2
0 A002 121.4669 25.1258 B077 120.7874 23.8272
1 A002 121.4669 25.1258 B117 120.4684 24.1324
2 A002 121.4669 25.1258 B123 120.5516 24.0161
3 A002 121.4669 25.1258 B174 120.8055 24.2269
4 A002 121.4669 25.1258 B183 120.4163 23.8759
df_info = pd.read_csv(sel_pair_csv, names=["stn1", "stlo1", "stla1", "stn2", "stlo2", "stla2"], header=None)
event_fig = os.path.join("." , "interstation_map.png")
plot_map = 1
if plot_map:
topo_data = "@earth_relief_15s"
res = "f"
figtitle="Interstation-Paths"
frame = ["a1f0.25", f"WSen+t{figtitle}"]
colormap = "geo"
minlon, maxlon, minlat, maxlat = (
min(df_info["stlo1"].min(),df_info["stlo2"].min()),
max(df_info["stlo1"].max(),df_info["stlo2"].max()),
min(df_info["stla1"].min(),df_info["stla2"].min()),
max(df_info["stla1"].max(),df_info["stla2"].max()),
)
dcoord = 0.5
minlon, maxlon, minlat, maxlat = (
minlon - dcoord,
maxlon + dcoord,
minlat - dcoord,
maxlat + dcoord,
)
fig = pygmt.Figure()
fig.basemap(region=[minlon, maxlon, minlat, maxlat], projection="M6i", frame=frame)
fig.grdimage(
grid=topo_data,
shading=True,
cmap=colormap,
)
fig.coast(
frame=frame,
resolution=res,
shorelines=["1/0.2p,black", "2/0.05p,gray"],
borders=1,
)
fig.plot(
x=df_info["stlo1"].values,
y=df_info["stla1"].values,
style="i10p",
color="blue",
pen="black",
)
fig.plot(
x=df_info["stlo2"].values,
y=df_info["stla2"].values,
style="i10p",
color="blue",
pen="black",
)
print("Plotting paths now...")
for stn1, stn2, stlo1, stla1, stlo2, stla2 in zip(df_info["stn1"].values, df_info["stn2"].values, df_info["stlo1"].values,df_info["stla1"].values,df_info["stlo2"].values,df_info["stla2"].values):
print(f"-->{stn1}-{stn2}")
fig.plot(
x=[stlo1,stlo2],
y=[stla1,stla2],
pen="0.1p,red,-",
straight_line=1,
)
fig.savefig(event_fig, crop=True, dpi=300)
Event-Station Map
import pygmt
import pandas as pd
def plot_event_moll_map(df_info, event, event_fig, clon=None, colormap='geo', topo_data = "@earth_relief_20m"):
'''
Utpal Kumar
2021, March
param df_info: pandas dataframe containing the event and station coordinates (type: pandas DataFrame)
param event: event name (type: str)
param event_fig: output figure name (type str)
param clon: central longitude (type float)
'''
res = "f"
if not colormap:
colormap = "geo"
if not clon:
clon = df_info["stlo"].mean()
proj = f"W{clon:.1f}/20c"
fig = pygmt.Figure()
fig.basemap(region="g", projection=proj, frame=True)
fig.grdimage(
grid=topo_data,
shading=True,
cmap=colormap,
)
fig.coast(
resolution=res,
shorelines=["1/0.2p,black", "2/0.05p,gray"],
borders=1,
)
fig.plot(
x=df_info["stlo"].values,
y=df_info["stla"].values,
style="i2p",
color="blue",
pen="black",
label="Station",
)
fig.plot(
x=df_info["evlo"].values[0],
y=df_info["evla"].values[0],
style="a15p",
color="red",
pen="black",
label="Event",
)
for stlo, stla in zip(df_info["stlo"].values, df_info["stla"].values):
fig.plot(
x=[df_info["evlo"].values[0], stlo],
y=[df_info["evla"].values[0], stla],
pen="red",
straight_line=1,
)
fig.savefig(event_fig, crop=True, dpi=300)
if __name__=="__main__":
event="test_event"
data_info_file = f"data_info_{event}.txt"
event_fig = f"event_map_{event}.png"
df_info = pd.read_csv(data_info_file)
plot_event_moll_map(df_info, event, event_fig)
Here, I used the Mollweide projection but this code can be applied for any other projections with a little tweak.
The first few lines of the data file are:
network,station,channel,stla,stlo,stel,evla,evlo,evdp,starttime,endtime,samplingRate,dist,baz
TW,GWUB,HHZ,24.5059,121.1131,2159.0,-58.5981,-26.4656,164.66,2018-12-11T02:25:32.000002Z,2018-12-11T03:56:31.990002Z,100.0,15445.41,205.14
TW,LXIB,HHZ,24.0211,121.4133,1327.0,-58.5981,-26.4656,164.66,2018-12-11T02:25:32.000000Z,2018-12-11T03:56:31.990000Z,100.0,15409.58,204.75
TW,VCHM,HHZ,23.2087,119.4295,60.0,-58.5981,-26.4656,164.66,2018-12-11T02:25:32.000000Z,2018-12-11T03:56:31.990000Z,100.0,15242.27,205.4
TW,VDOS,HHZ,20.701,116.7306,5.0,-58.5981,-26.4656,164.66,2018-12-11T02:25:32.000000Z,2018-12-11T03:56:31.990000Z,100.0,14871.63,205.6
TW,VNAS,HHZ,10.3774,114.365,2.0,-58.5981,-26.4656,164.66,2018-12-11T02:25:32.000000Z,2018-12-11T03:56:31.990000Z,100.0,13726.26,203.23
TW,VWDT,HHZ,23.7537,121.1412,2578.0,-58.5981,-26.4656,164.66,2018-12-11T02:25:32.000000Z,2018-12-11T03:56:31.990000Z,100.0,15371.08,204.77
TW,VWUC,HHZ,24.9911,119.4492,42.0,-58.5981,-26.4656,164.66,2018-12-11T02:25:32.000000Z,2018-12-11T03:56:31.990000Z,100.0,15420.85,206.25
TW,YD07,HHZ,25.1756,121.62,442.0,-58.5981,-26.4656,164.66,2018-12-11T02:25:32.000000Z,2018-12-11T03:56:31.990000Z,100.0,15534.34,205.2
TW,HOPB,HHZ,24.3328,121.6929,160.0,-58.5981,-26.4656,164.66,2018-12-11T02:25:32.003130Z,2018-12-11T03:56:31.993130Z,100.0,15452.83,204.75
TW,SYNB,HHZ,23.2482,120.9862,2352.0,-58.5981,-26.4656,164.66,2018-12-11T02:25:32.003131Z,2018-12-11T03:56:31.993131Z,100.0,15313.6,204.62
TW,DYSB,HHZ,24.8208,121.4049,1000.0,-58.5981,-26.4656,164.66,2018-12-11T02:25:32.008393Z,2018-12-11T03:56:31.998393Z,100.0,15489.54,205.14
TW,FUSB,HHZ,24.7597,121.5875,690.0,-58.5981,-26.4656,164.66,2018-12-11T02:25:32.008394Z,2018-12-11T03:56:31.998394Z,100.0,15491.23,205.01
TW,HGSD,HHZ,23.4921,121.4239,134.8,-58.5981,-26.4656,164.66,2018-12-11T02:25:32.008393Z,2018-12-11T03:56:31.998393Z,100.0,15356.77,204.5
---
References
- Uieda, L., Wessel, P., 2019. PyGMT: Accessing the Generic Mapping Tools from Python. AGUFM 2019, NS21B–0813.
- Wessel, P., Luis, J.F., Uieda, L., Scharroo, R., Wobbe, F., Smith, W.H.F., Tian, D., 2019. The Generic Mapping Tools Version 6. Geochemistry, Geophys. Geosystems 20, 5556–5564. https://doi.org/10.1029/2019GC008515
I absolutely love your blog and find the majority of your post’s to be just what I’m looking for. Do you offer guest writers to write content for you? I wouldn’t mind writing a post or elaborating on a lot of the subjects you write concerning here. Again, awesome web log!
Hey just wanted to give you a quick heads up. The words in your post seem to be running off the screen in Chrome. I’m not sure if this is a format issue or something to do with browser compatibility but I thought I’d post to let you know. The layout look great though! Hope you get the problem solved soon. Thanks
I love your blog.. very nice colors & theme. Did you design this website yourself or did you hire someone to do it for you? Plz answer back as I’m looking to construct my own blog and would like to find out where u got this from. kudos
Hello there! I could have sworn I’ve been to this blog before but after looking at many of the posts I realized it’s new to me. Regardless, I’m certainly pleased I discovered it and I’ll be bookmarking it and checking back often!
This is very attention-grabbing, You’re an overly skilled blogger. I have joined your feed and look ahead to looking for more of your wonderful post. Additionally, I’ve shared your site in my social networks
I’m not sure why but this web site is loading incredibly slow for me. Is anyone else having this problem or is it a problem on my end? I’ll check back later and see if the problem still exists.
I know this site provides quality based articles and extra stuff, is there any other web page which presents these kinds of stuff in quality?
Pretty section of content. I just stumbled upon your blog and in accession capital to assert that I acquire actually enjoyed account your blog posts. Anyway I’ll be subscribing to your feeds and even I achievement you access consistently quickly.
Keep on writing, great job!
Hi there to every one, the contents present at this site are really amazing for people experience, well, keep up the good work fellows.
naturally like your website but you have to take a look at the spelling on several of your posts. A number of them are rife with spelling problems and I find it very bothersome to inform the reality on the other hand I will certainly come back again.
I am no longer certain where you are getting your info, however good topic. I must spend a while finding out much more or understanding more. Thank you for wonderful info I was looking for this info for my mission.
It’s actually very complex in this busy life to listen news on TV, thus I simply use the web for that reason, and take the hottest news.