Introduction
If you have been working in seismology, then you must have come across Generic Mapping Tools (GMT) software. It is widely used software, not only in seismology but across the Earth, Ocean, and Planetary sciences and beyond. It is a free, open-source software used to generate publication quality maps or illustrations, process data and make animations. Recently, GMT built API (Application Programming Interface) for MATLAB, Julia and Python. In this post, we will explore the Python wrapper library for the GMP API – PyGMT. Using the GMT from Python script allows enormous capabilities.
The API reference for PyGMT can be accessed from here and is strongly recommended. Although PyGMT project is still in completion, there are many functionalities available.
Step-by-step guide for PyGMT using an example
In this post, we will demonstrate the PyGMT implementation by plotting the topographic map of southern India. We will also plot some markers on the map.
Importing Libraries
The first thing I like to do is to import all the necessary libraries for the task. This keeps the code organized.
import pygmt
minlon, maxlon = 60, 95
minlat, maxlat = 0, 25
Define topographic data source
The topographic data can be accessed from various sources. In this snippet below, I listed a couple of sources.
#define etopo data file
# topo_data = 'path_to_local_data_file'
topo_data = '@earth_relief_30s' #30 arc second global relief (SRTM15+V2.1 @ 1.0 km)
# topo_data = '@earth_relief_15s' #15 arc second global relief (SRTM15+V2.1)
# topo_data = '@earth_relief_03s' #3 arc second global relief (SRTM3S)
Initialize the pyGMT figure
Similar to the matplotlib’s fig = plt.Figure()
, PyGMT begins with the creation of Figure instance.
# Visualization
fig = pygmt.Figure()
Define CPT file
# make color pallets
pygmt.makecpt(
cmap='topo',
series='-8000/8000/1000',
continuous=True
)
Plot the high resolution topography from the data source
Now, we provide the topo_data
, region
and the projection
for the figure to plot. The region
can also be provided in the form of ISO country code strings, e.g. TW
for Taiwan, IN
for India, etc. For more ISO codes, check the wikipedia page here. In this example, we used the projection
of M4i
, which specifies four-inch wide Mercator projection. For more projection options, check here.
#plot high res topography
fig.grdimage(
grid=topo_data,
region=[minlon, maxlon, minlat, maxlat],
projection='M4i'
)
#plot high res topography
fig.grdimage(
grid=topo_data,
region=[minlon, maxlon, minlat, maxlat],
projection='M4i',
frame=True
)
#plot high res topography
fig.grdimage(
grid=topo_data,
region=[minlon, maxlon, minlat, maxlat],
projection='M4i',
shading=True,
frame=True
)
Plot the coastlines/shorelines on the map
Figure.coast
can be used to plot continents, shorelines, rivers, and borders on maps. For details, visit pygmt.Figure.coast.
fig.coast(
region=[minlon, maxlon, minlat, maxlat],
projection='M4i',
shorelines=True,
frame=True
)
Plot the topographic contour lines
We can also plot the topographic contour lines to emphasize the change in topography. Here, I used the contour intervals of 4000 km and only show contours with elevation less than 0km.
fig.grdcontour(
grid=topo_data,
interval=4000,
annotation="4000+f6p",
limit="-8000/0",
pen="a0.15p"
)
Plot data on the topographic map
## Generate fake coordinates in the range for plotting
lons = minlon + np.random.rand(10)*(maxlon-minlon)
lats = minlat + np.random.rand(10)*(maxlat-minlat)
# plot data points
fig.plot(
x=lons,
y=lats,
style='c0.1i',
color='red',
pen='black',
label='something',
)
We plot the locations by red cicles. You can change the markers to any other marker supported by GMT, for example a0.1i
will produce stars of size 0.1 inches.
Plot colorbar for the topography
Default is horizontal colorbar
# Plot colorbar
fig.colorbar(
frame='+l"Topography"'
)
For vertical colorbar:
# For vertical colorbar
fig.colorbar(
frame='+l"Topography"',
position="x11.5c/6.6c+w6c+jTC+v"
)
We can define the location of the colorbar using the string x11.5c/6.6c+w6c+jTC+v
. +v
specifies the vertical colorbar.
Output the figure to a file
Similar to matplotlib
, PyGMT shows the figure by
# save figure
fig.show() #fig.show(method='external')
To save figure to png. PyGMT crops the figure by default and has output figure resolution of 300 dpi for png
and 720 dpi for pdf
. There are several other output formats available as well.
# save figure
fig.savefig("topo-plot.png", crop=True, dpi=300, transparent=True)
fig.savefig("topo-plot.pdf", crop=True, dpi=720)
If you want to save all formats (e.g., pdf, eps, tif) then
allformat = 1
if allformat:
fig.savefig("topo-plot.pdf", crop=True, dpi=720)
fig.savefig("topo-plot.eps", crop=True, dpi=300)
fig.savefig("topo-plot.tif", crop=True, dpi=300, anti_alias=True)
Complete Script
import numpy as np
import pygmt
np.random.seed(0)
minlon, maxlon = 60, 95
minlat, maxlat = 0, 25
## Generate fake coordinates in the range for plotting
lons = minlon + np.random.rand(10)*(maxlon-minlon)
lats = minlat + np.random.rand(10)*(maxlat-minlat)
#define etopo data file
topo_data = '@earth_relief_30s' #30 arc second global relief (SRTM15+V2.1 @ 1.0 km)
# Visualization
fig = pygmt.Figure()
# make color pallets
pygmt.makecpt(
cmap='topo',
series='-8000/8000/1000',
continuous=True
)
#plot high res topography
fig.grdimage(
grid=topo_data,
region=[minlon, maxlon, minlat, maxlat],
projection='M4i',
shading=True,
frame=True
)
# plot coastlines
fig.coast(
region=[minlon, maxlon, minlat, maxlat],
projection='M4i',
shorelines=True,
frame=True
)
# plot topo contour lines
fig.grdcontour(
grid=topo_data,
interval=4000,
annotation="4000+f6p",
# annotation="1000+f6p",
limit="-8000/0",
pen="a0.15p"
)
# plot data points
fig.plot(
x=lons,
y=lats,
style='c0.1i',
color='red',
pen='black',
label='something',
)
## Plot colorbar
# Default is horizontal colorbar
fig.colorbar(
frame='+l"Topography"'
)
# save figure as pdf
fig.savefig("topo-plot.pdf", crop=True, dpi=720)
Plot Focal Mechanism on a Map
How would you plot the focal mechanism on a map? This can be simply done in GMT using the command psmeca
. But PyGMT do not support psmeca
so far. So, we use a workaround. We call the GMT module using the PyGMT’s pygmt.clib.Session
class. This we do using the context manager with
in Python.
import pygmt
import numpy as np
minlon, maxlon = 70, 100
minlat, maxlat = 0, 35
## Generate fake coordinates in the range for plotting
num_fm = 15
lons = minlon + np.random.rand(num_fm)*(maxlon-minlon)
lats = minlat + np.random.rand(num_fm)*(maxlat-minlat)
strikes = np.random.randint(low = 0, high = 360, size = num_fm)
dips = np.random.randint(low = 0, high = 90, size = num_fm)
rakes = np.random.randint(low = 0, high = 360, size = num_fm)
magnitudes = np.random.randint(low = 5, high = 9, size = num_fm)
#define etopo data file
topo_data = '@earth_relief_30s' #30 arc second global relief (SRTM15+V2.1 @ 1.0 km)
fig = pygmt.Figure()
# make color pallets
pygmt.makecpt(
cmap='topo',
series='-8000/11000/1000',
continuous=True
)
#plot high res topography
fig.grdimage(
grid=topo_data,
region='IN',
projection='M4i',
shading=True,
frame=True
)
fig.coast( region='IN',
projection='M4i',
frame=True,
shorelines=True,
borders=1, #political boundary
)
for lon, lat, st, dp, rk, mg in zip(lons, lats, strikes, dips, rakes, magnitudes):
with pygmt.helpers.GMTTempFile() as temp_file:
with open(temp_file.name, 'w') as f:
f.write(f'{lon} {lat} 0 {st} {dp} {rk} {mg} 0 0') #moment tensor: lon, lat, depth, strike, dip, rake, magnitude
with pygmt.clib.Session() as session:
session.call_module('meca', f'{temp_file.name} -Sa0.2i')
fig.savefig("fm-plot.pdf", crop=True, dpi=720)
Plotting interstation paths between two stations
The following script uses the sel_pair_csv
file for the coordinates of the pairs of stations. The sel_pair_csv
file is a csv file that is formatted like:
stn1 stlo1 stla1 stn2 stlo2 stla2
0 A002 121.4669 25.1258 B077 120.7874 23.8272
1 A002 121.4669 25.1258 B117 120.4684 24.1324
2 A002 121.4669 25.1258 B123 120.5516 24.0161
3 A002 121.4669 25.1258 B174 120.8055 24.2269
4 A002 121.4669 25.1258 B183 120.4163 23.8759
df_info = pd.read_csv(sel_pair_csv, names=["stn1", "stlo1", "stla1", "stn2", "stlo2", "stla2"], header=None)
event_fig = os.path.join("." , "interstation_map.png")
plot_map = 1
if plot_map:
topo_data = "@earth_relief_15s"
res = "f"
figtitle="Interstation-Paths"
frame = ["a1f0.25", f"WSen+t{figtitle}"]
colormap = "geo"
minlon, maxlon, minlat, maxlat = (
min(df_info["stlo1"].min(),df_info["stlo2"].min()),
max(df_info["stlo1"].max(),df_info["stlo2"].max()),
min(df_info["stla1"].min(),df_info["stla2"].min()),
max(df_info["stla1"].max(),df_info["stla2"].max()),
)
dcoord = 0.5
minlon, maxlon, minlat, maxlat = (
minlon - dcoord,
maxlon + dcoord,
minlat - dcoord,
maxlat + dcoord,
)
fig = pygmt.Figure()
fig.basemap(region=[minlon, maxlon, minlat, maxlat], projection="M6i", frame=frame)
fig.grdimage(
grid=topo_data,
shading=True,
cmap=colormap,
)
fig.coast(
frame=frame,
resolution=res,
shorelines=["1/0.2p,black", "2/0.05p,gray"],
borders=1,
)
fig.plot(
x=df_info["stlo1"].values,
y=df_info["stla1"].values,
style="i10p",
color="blue",
pen="black",
)
fig.plot(
x=df_info["stlo2"].values,
y=df_info["stla2"].values,
style="i10p",
color="blue",
pen="black",
)
print("Plotting paths now...")
for stn1, stn2, stlo1, stla1, stlo2, stla2 in zip(df_info["stn1"].values, df_info["stn2"].values, df_info["stlo1"].values,df_info["stla1"].values,df_info["stlo2"].values,df_info["stla2"].values):
print(f"-->{stn1}-{stn2}")
fig.plot(
x=[stlo1,stlo2],
y=[stla1,stla2],
pen="0.1p,red,-",
straight_line=1,
)
fig.savefig(event_fig, crop=True, dpi=300)
Event-Station Map
import pygmt
import pandas as pd
def plot_event_moll_map(df_info, event, event_fig, clon=None, colormap='geo', topo_data = "@earth_relief_20m"):
'''
Utpal Kumar
2021, March
param df_info: pandas dataframe containing the event and station coordinates (type: pandas DataFrame)
param event: event name (type: str)
param event_fig: output figure name (type str)
param clon: central longitude (type float)
'''
res = "f"
if not colormap:
colormap = "geo"
if not clon:
clon = df_info["stlo"].mean()
proj = f"W{clon:.1f}/20c"
fig = pygmt.Figure()
fig.basemap(region="g", projection=proj, frame=True)
fig.grdimage(
grid=topo_data,
shading=True,
cmap=colormap,
)
fig.coast(
resolution=res,
shorelines=["1/0.2p,black", "2/0.05p,gray"],
borders=1,
)
fig.plot(
x=df_info["stlo"].values,
y=df_info["stla"].values,
style="i2p",
color="blue",
pen="black",
label="Station",
)
fig.plot(
x=df_info["evlo"].values[0],
y=df_info["evla"].values[0],
style="a15p",
color="red",
pen="black",
label="Event",
)
for stlo, stla in zip(df_info["stlo"].values, df_info["stla"].values):
fig.plot(
x=[df_info["evlo"].values[0], stlo],
y=[df_info["evla"].values[0], stla],
pen="red",
straight_line=1,
)
fig.savefig(event_fig, crop=True, dpi=300)
if __name__=="__main__":
event="test_event"
data_info_file = f"data_info_{event}.txt"
event_fig = f"event_map_{event}.png"
df_info = pd.read_csv(data_info_file)
plot_event_moll_map(df_info, event, event_fig)
Here, I used the Mollweide projection but this code can be applied for any other projections with a little tweak.
The first few lines of the data file are:
network,station,channel,stla,stlo,stel,evla,evlo,evdp,starttime,endtime,samplingRate,dist,baz
TW,GWUB,HHZ,24.5059,121.1131,2159.0,-58.5981,-26.4656,164.66,2018-12-11T02:25:32.000002Z,2018-12-11T03:56:31.990002Z,100.0,15445.41,205.14
TW,LXIB,HHZ,24.0211,121.4133,1327.0,-58.5981,-26.4656,164.66,2018-12-11T02:25:32.000000Z,2018-12-11T03:56:31.990000Z,100.0,15409.58,204.75
TW,VCHM,HHZ,23.2087,119.4295,60.0,-58.5981,-26.4656,164.66,2018-12-11T02:25:32.000000Z,2018-12-11T03:56:31.990000Z,100.0,15242.27,205.4
TW,VDOS,HHZ,20.701,116.7306,5.0,-58.5981,-26.4656,164.66,2018-12-11T02:25:32.000000Z,2018-12-11T03:56:31.990000Z,100.0,14871.63,205.6
TW,VNAS,HHZ,10.3774,114.365,2.0,-58.5981,-26.4656,164.66,2018-12-11T02:25:32.000000Z,2018-12-11T03:56:31.990000Z,100.0,13726.26,203.23
TW,VWDT,HHZ,23.7537,121.1412,2578.0,-58.5981,-26.4656,164.66,2018-12-11T02:25:32.000000Z,2018-12-11T03:56:31.990000Z,100.0,15371.08,204.77
TW,VWUC,HHZ,24.9911,119.4492,42.0,-58.5981,-26.4656,164.66,2018-12-11T02:25:32.000000Z,2018-12-11T03:56:31.990000Z,100.0,15420.85,206.25
TW,YD07,HHZ,25.1756,121.62,442.0,-58.5981,-26.4656,164.66,2018-12-11T02:25:32.000000Z,2018-12-11T03:56:31.990000Z,100.0,15534.34,205.2
TW,HOPB,HHZ,24.3328,121.6929,160.0,-58.5981,-26.4656,164.66,2018-12-11T02:25:32.003130Z,2018-12-11T03:56:31.993130Z,100.0,15452.83,204.75
TW,SYNB,HHZ,23.2482,120.9862,2352.0,-58.5981,-26.4656,164.66,2018-12-11T02:25:32.003131Z,2018-12-11T03:56:31.993131Z,100.0,15313.6,204.62
TW,DYSB,HHZ,24.8208,121.4049,1000.0,-58.5981,-26.4656,164.66,2018-12-11T02:25:32.008393Z,2018-12-11T03:56:31.998393Z,100.0,15489.54,205.14
TW,FUSB,HHZ,24.7597,121.5875,690.0,-58.5981,-26.4656,164.66,2018-12-11T02:25:32.008394Z,2018-12-11T03:56:31.998394Z,100.0,15491.23,205.01
TW,HGSD,HHZ,23.4921,121.4239,134.8,-58.5981,-26.4656,164.66,2018-12-11T02:25:32.008393Z,2018-12-11T03:56:31.998393Z,100.0,15356.77,204.5
---
References
- Uieda, L., Wessel, P., 2019. PyGMT: Accessing the Generic Mapping Tools from Python. AGUFM 2019, NS21B–0813.
- Wessel, P., Luis, J.F., Uieda, L., Scharroo, R., Wobbe, F., Smith, W.H.F., Tian, D., 2019. The Generic Mapping Tools Version 6. Geochemistry, Geophys. Geosystems 20, 5556–5564. https://doi.org/10.1029/2019GC008515