Utpal Kumar

Utpal Kumar

Geophysicist | Geodesist | Seismologist | Open-source Developer I am a geophysicist with a background in computational geophysics, currently working as a postdoctoral researcher at UC Berkeley. My research focuses on seismic data analysis, structural health monitoring, and understanding deep Earth structures. I have had the opportunity to work on diverse projects, from investigating building characteristics using smartphone data to developing 3D models of the Earth's mantle beneath the Yellowstone hotspot. In addition to my research, I have experience in cloud computing, high-performance computing, and single-board computers, which I have applied in various projects. This includes working with platforms like AWS, GCP, Linode, DigitalOcean, as well as supercomputing environments such as STAMPEDE2, ANVIL, Savio and PERLMUTTER (and CORI). My work involves developing innovative solutions for structural health monitoring and advancing real-time seismic response analysis. I am committed to applying these skills to further research in computational seismology and structural health monitoring.

Understanding MEMS Accelerometers

While MEMS accelerometers offer advantages in cost, size, and deployment flexibility compared to traditional broadband seismometers, they face limitations in recording long-period seismic waves. The future of seismic instrumentation likely lies in integrating MEMS and broadband technologies, combining the high spatial resolution of MEMS sensors with the sensitivity and bandwidth of broadband seismometers to enhance seismic monitoring capabilities across different scales and frequency ranges.

Structural Health Monitoring Using Low-Cost Sensors and Wireless Networks

The advent of low-cost Microelectromechanical Systems (MEMS) sensors has revolutionized Structural Health Monitoring (SHM) of buildings, enabling cost-effective damage identification strategies. By leveraging wireless sensor networks and MEMS accelerometers, scalable and distributed systems for monitoring critical infrastructure are now possible. This article explores the integration of these technologies, including smartphone-based applications, to enhance infrastructure monitoring and maintenance.